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1. INTRODUCTION 

Mohsen and Pinder' presented a solution to the transport equation 

where 
c(x, t )  is the concentration of the migrating species [M/L3] 

D is the diffusion coefficient [L2/T] 
V is the fluid velocity [L/T] 
x is the spatial co-ordinate [L] 
t is the time [TI 

solved under the initial condition 

and the following two sets of boundary conditions 

(Dirichlet) c(0, t )  = c1 
c(l, t )  = c2 
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c(0, t )  = c1 1 
ac (Neumann) -(l, t )  = 0 
ax 

(3) 

c(x, t )  was normalized as shown below: 

&x, t)  for Dirichlet condition c(1, t )  = c2 
6 ( ~ ,  t )  = ~ - 

c(x, c1 t ,  - i $(x, t )  for Neumann condition c'(1, t )  = 0 

A combined form of the general solution was shown to be 

6(x, t )  = @) + ePxIz 
m 

WEB, - B:] sin(&J)e-[<& t ( P i 2 ) 2 1 T  
n = l  

where 
P = Peclet number = V1/D 
T= Non-dimensional time = Dt/E2 

X = Non-dimensional distance = x/l 
COB, = Fourier coefficients for polynomial initial condition 
COB: = Fourier coefficients for '0' initial condition 

t, = n7c for Dirichlet and 2, for Neumann b.c., respectively 
Z, = non-zero roots of Z,  cot (2,) + P/2  = 0 
a =  the solution to the steady state part of ( I )  under the given non-homogeneous 

boundary conditions (2) or (3). 

(4) 

For a more detailed description of the solution and various parameters therein see Reference 1. 
Numerical evaluation of the solution at large and small values of T is difficult. At small T the 

solution is a slowly decaying sine series and, therefore, requires many terms for convergence. At 
large T,  evaluation of even the first term of the series may cause machine underflow, even though 
the solution may not have converged. Thus it is helpful to know a range of T and P for which 
computer evaluation of the solution is possible. In the following section the convergence of the 
solution is investigated and a region of applicability (for the governing parameters T and P )  is 
established, in which the solution may be computer evaluated. 

REGION OF APPLICABILITY O F  THE SOLUTION 

Two different factors limit the applicability of the analytical solution presented in the previous 
section, when numerical evaluations are desired. At small times the convergence is less rapid, owing 
to the fact that the magnitude of the argument in the exponential function in (5 )  is small. A small 
time Tl is derived which guarantees that the sum of the first k terms in the series deviate less than an 
arbitrary small number E from the sum of the infinite series for different Peclet-numbers, P. 
Secondly, at sufficiently large times even the first term in the series is too small to be represented on 
a given computer, i.e. underflow occurs. For a given underflow limit E~ and Peclet number P the 
largest possible time T,, which does not cause underflow in the first term, is derived. We assume 
that the following properties hold for g(x). 

(6) 
g(x) = O<G(x)=-<$<l  

C1 

To evaluate the series in (5) k terms are used. We want to determine a minimum time Tl such that 
the remainder of the series is less than E,  that is 
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where 
m 

s,(T) = C ePxi2w(B,O - B,) sin(&f)e-’tA +(P’2)21T 
n = k + l  

I 

B, = s G(x)e-PX/2 sin(<,X)dx 

B: = g(x)e-PX’2 sin(<,X)dx 

0 

s: 
We start by obtaining an estimate of /B,O - B,l using (6), (9) and (10) 

21 
/B,O-BB,I<-[l  -e-‘/’] 

P 

We are now in a position to estimate &(TI) using (8) and ( I  1) 

Now we need an estimate of the two different o’s, wJI and w6. The values for thew’s were derived by 
Mohsen and Pinder.‘ 

Here we use the fact that Z, 3 7112 and P > 0, thus 

Now apply the inequality Z, + > Z ,  
2 2 2 ,  2 71 wJI < -~ < -- 
12Z,-l Ex--1 

Thus (1 2), (1 3 )  and (1 4) yield: 

Application of the fact that 5, > n(n - 4) together with some simple inequalities and summation of 
a geometric series yield 

For all TI satisfying the following relation 

we can find a lower limit for the denominator in the last expression in (1 6) and thus find an upper 
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bound for the last expression in (16) 

If we now impose the condition that Sk(Tl) be less than 8, equation (18) allows a simple calculation 
of a lower limit for T,, as long as the assumption (17) holds 

In(') + In(?) - In& 

(P/2)2 + n2(k + $ ) 2  
Tl > 

This is a lower time limit for which we can evaluate the series and limit the error to E.  

solution can be evaluated without risking underflow in the first term is 
With a very similar derivation to the above we can show that an upper time limit at which the 

Equation (19) holds for all k. For small values of k equation (19) may however be too conservative. 
The emphasis of the current study is however on high accuracy evaluations, thus, necessitating 
larger k values. 

In Figure 1 we find equations (17), (19) and (20) plotted for the case of 

& = 10-20  (21) 
EM = 1 0 - 7 0  

k = 5 0  

First we notice that T, is everywhere greater than y(k) which is necessary for the region of 
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Figure 1. Region of applicability for numerical evaluation of the analytical solution to the transport equation (8 = lo-'', 
eM = 10-70, k = 50) 
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applicability to be bounded by Tz and T,. Therefore the region in which the analytical solution can 
be used is bounded below by Ti and above by T,. When studying this region we see that for Peclet 
numbers above approximately 300 the Tz and T, curves come so close together that the region of 
applicability virtually vanishes. Therefore a Peclet number of approximately 300 seems to be an 
upper limit for the applicability of the solution. 

CONCLUSION 

A certain region of parameters is shown to generate satisfactory numerical evaluation of an 
analytical solution to the convective-dispersive equation with polynomial initial condition. A 
lower time limit is established, above which the error due to truncation of the infinite series is within 
a prescribed limit. An upper time limit is determined below which evaluation of the first term in the 
series does not cause underflow. 

ACKNOWLEDGEMENT 

During the performance of this work the first author was supported by the U.S. National Science 
Foundation under grant No. # CEE-7921076. 

REFERENCE 

1. M. F. N. Mohsen and G. F. Pinder, 'Analytical solution of the transport equation using a polynomial initial condition 
for verification of numerical simulators', Inl. j .  numer. methods fluids, 4, 701-707 (1984). 




